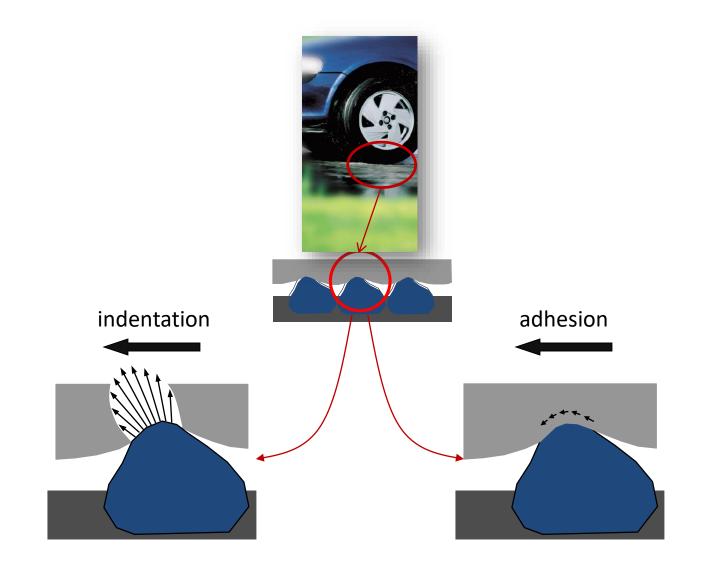
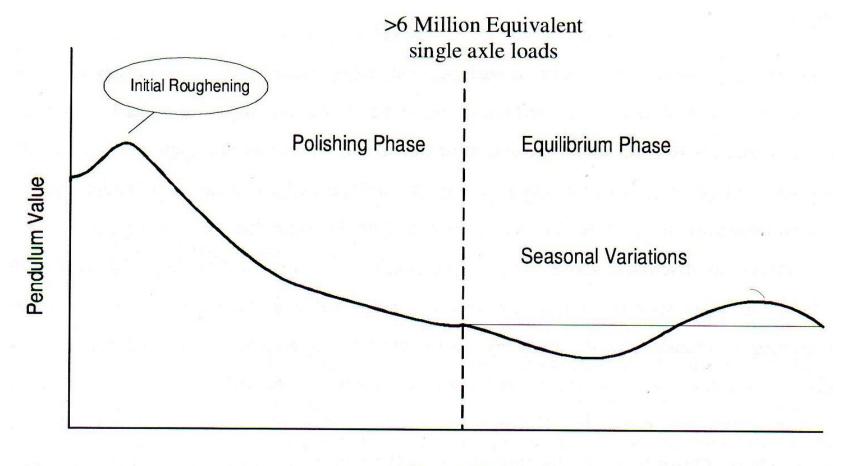

Long-Term Skid Resistance of Asphalt Surfacings

Correlation between Wehner-Schulze friction values and the mineralogical composition of the aggregates

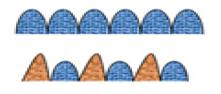
Malal KANE / Minh Tan DO

UGE/AME/EASE Allée des Ponts et Chaussées Route de Bouaye - CS4 44344 Bouguenais Cedex


Skid resistance describes the contribution that the **<u>road</u>** makes to tyre/road friction...



Turning



Time / ESAs

Analysis after polishing showed two mechanisms regarding polishing of aggregates :

- "General" polishing that tends to smooth off the coarse aggregate edges, and
- "Differential" polishing that tends to create additional roughness on the aggregate faces.

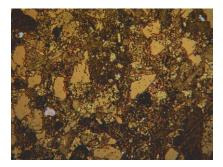
 So, while the texture evolves continuously due to the polishing effect of traffic, analyzing the mineralogical composition can give a quantitative evaluation of an aggregate's ability to retain its texture.

The objective is to correlate the long term skid resistance of road surfacings to the mineralogical properties of aggregates.

- Different types of aggregates commonly used in asphalt surfacings were used in the study. The selection of aggregates was based on the mineralogy and their PSVs.
 - <u>Greywacke</u> is a type of sedimentary rock belonging to the sandstone group.
 - <u>Granites</u> are intrusive igneous rocks composed of interlocking crystals. They are usually coarse grained, often with similar sized individual crystals, which are generally randomly arranged.
 - <u>Limestone</u> is also a sedimentary rock formed in a marine environment from the precipitation of calcium carbonate and compressed to form a solid rock.

Aggregate type

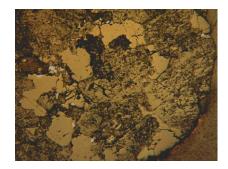
Type of Aggregates	Name of the Aggregates	Origin			
	Dolomite	Luxembourg			
	Limestone (1)	France			
Sedimentary rock	Limestone (2)	France			
Sedimentary rock	Silico-Limestone	France			
	Greywacke (1)	France			
	Greywacke (2)	England			
	Basalt	France			
Igneous rock	Granite	France			
	Quartzite (1)	Luxembourg			
Metamorphic rock	Quartzite (2)	France			
	Quartzite (3)	France			
	Rhyolite / Dacite	Portugal			
Slag	Blast Furnace (HF)	Luxembourg			
Slag	Slag from Electrical oven (EAF)	Luxembourg			


Petrographic examination

- Petrographic examination of aggregate samples was carried out in accordance.
- The main rock types were then identified and the relative proportions of the constituents were estimated using a light microscope.

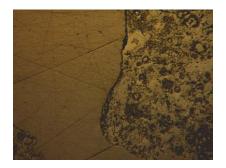
Greywacke

 Petrographic examination showed that greywacke aggregate comprised of several mineral grains namely: quartz, feldspars, chlorite and biotite.


Phase	% by weight	Moh's scale
Quartz	52	7
Feldspar	16	6
Chlorite	22	2.5
Biotite	10	3

Granite

 Petrographic examination of the granite showed that the rock comprised mainly of quartz, feldspars (orthoclase), amphibole and biotite.


Phase	% by weight	Moh's scale
Quartz	27	7
Orthoclase felspar	49	6
Amphibole	19	6
Biotite	5	3

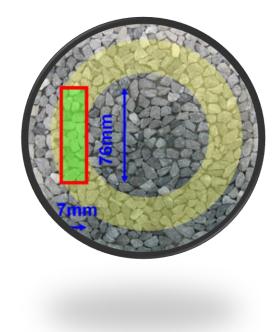
Limestone

 Petrographic examination of the limestone showed an almost single mineral phase nature of the aggregate.

Phase	% by weight	Moh's scale
Calcite	100	3

	Dolomite	Limestone (1)	Limestone (2)	Silico- Limestone	Greywacke (1)	Greywacke (2)	Granite	Basalt	Quartzite (1)	Quartzite (2)	Quartzite (3)	Rhyolite / Dacite	Blast Furnace (HF)	Slag Electrical oven (EAF)	Moh's Scale Average
Illite	2			2	5				2	5	4				1,5
Gypsum								1					8		1,8
Chlorite					4	22			3	5		2			2,3
Ettringite													10		2,5
Muscovite	5	2		3	8				7	6		9			2,5
Biotite						10	5								3,0
Calcite		95	100	6					1		2		1		3,0
Nordstrandite															3,0
Dolomite	85				1						1	2			3,8
Brownmillerite													13	14	5,0
Wuestite														5	5,3
Gehlenite													62	35	5,5
Augite								18							5,8
Nepheline								11							5,8
Aegirine								8							6,0
Amphibole							19								6,0
Feldspar						16	49								6,0
Diopside								5					4	10	6,0
Hematite					1				1					2	6,0
Magnetite														6	6,0
Merwinite														1	6,0
Sanidine												4			6,0
Albite					12			5	2	15	4	6			6,3
Anorthite								22							6,3
Orthoclase								1				14			6,3
Microcline	3			5	5			11	3	4		18			6,3
Jadeite								2						26	6,8
Forsterite iron								17							7,0
Quartz	4	3		81	64	52	27		82	61	90	45	2		7,0
Miscellaneous				3						5					6,0

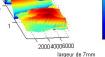
Specimens



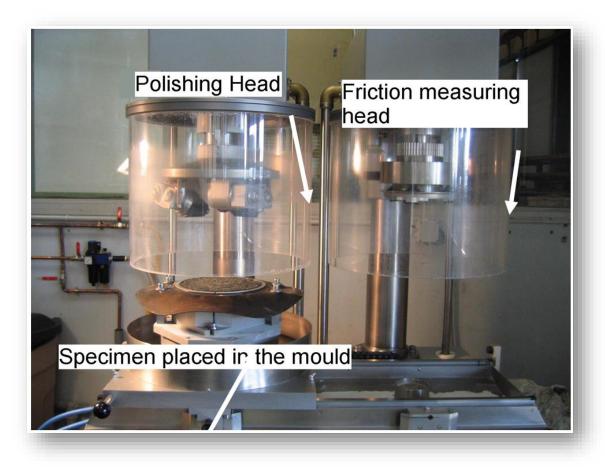
Mosaic

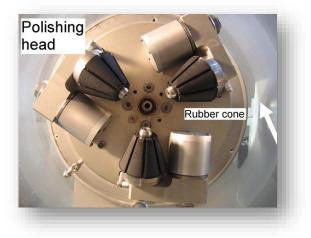
Asphalt

Texture measurements

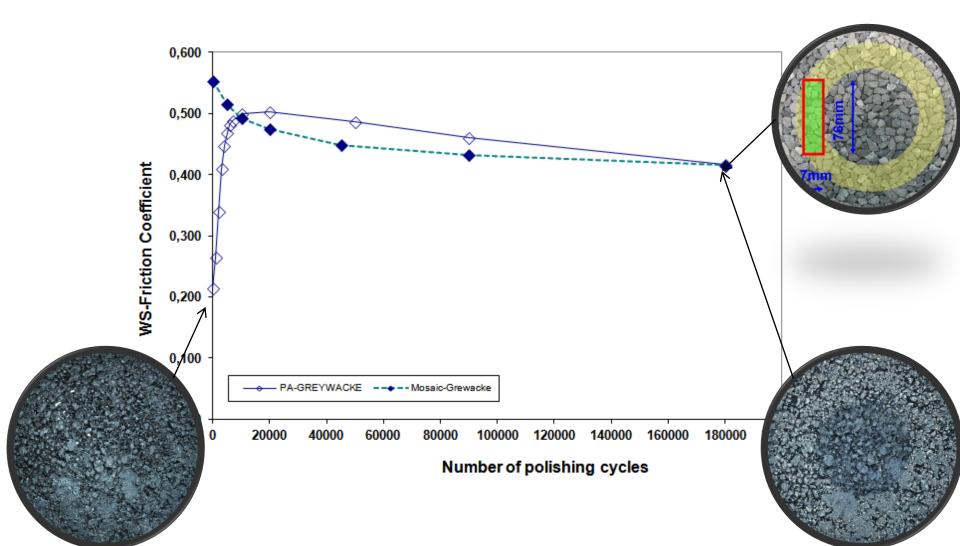


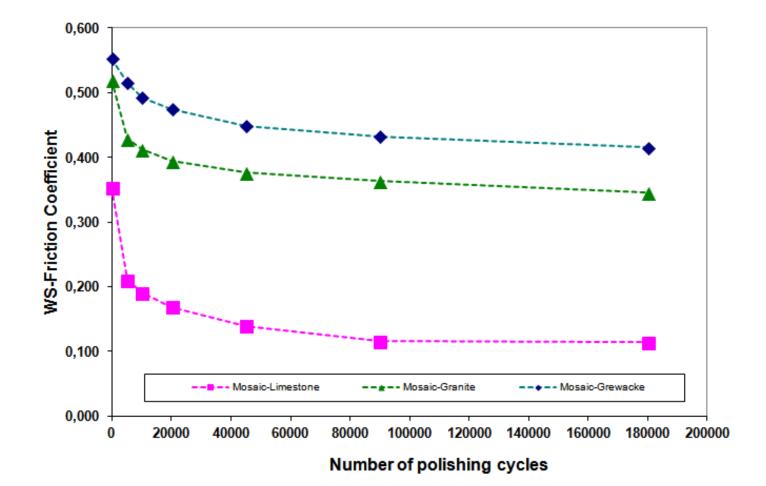
- measuring range in the direction "x": 10 microns number of measuring points per profile: 7601
- profile measured by length: 76 mm

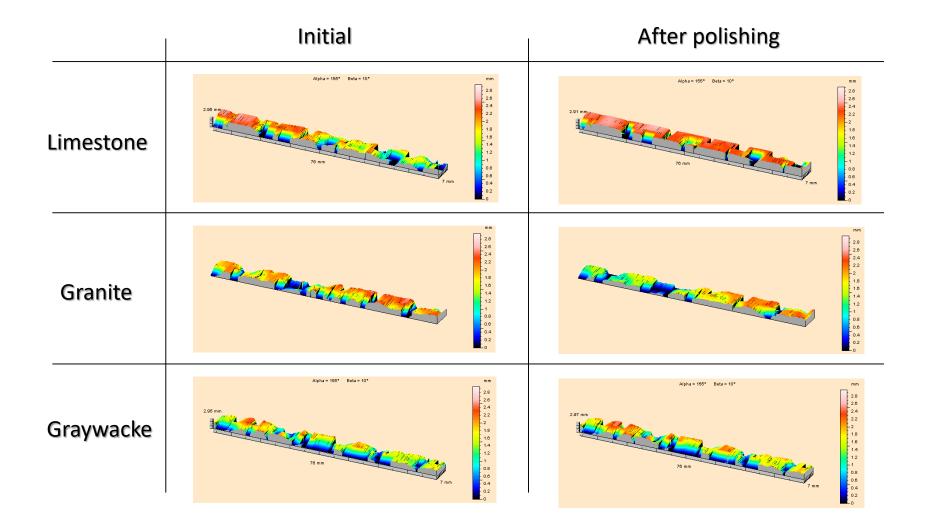

٠


٠

2000


Polishing tests




Friction/Polishing

Friction/Polishing

Texture/Polishing

Texture/Polishing

- Aggregates composed of single minerals of relatively low hardness have a very low resistance to polishing.
- On the other hand, sandstones, composed primarily of hard quartz mineral particles cemented together with a softer mineral matrix, have good frictional properties because of the differential wear and debonding of individual particles.

Aggregate Hardness Parameter (AHP)

$AHP = dmp_M + cd_M$

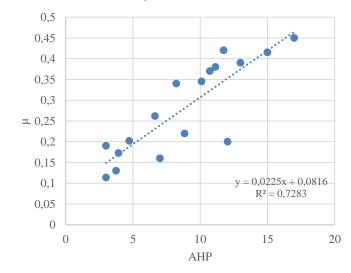
Where,

- **AHP** is defined as the Aggregate Hardness Parameter of the aggregate.
- cd_M and dmp_M are respectively the "<u>Contrast of Hardness</u>" and the "<u>Average</u> <u>Hardness</u>" defined as following:

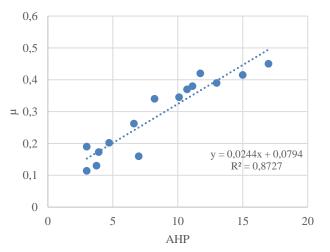
 $dmp_{M} = \sum_{i} p_{i} dv_{i}$ $cd_{M} = \sum_{i} |dv_{i} - dv_{b}|$

 dv_i is the "Moh's scale hardness value" of each mineral constituting the aggregate and p_i is the percentage by mass of each mineral constituting the aggregate. dv_p is the "Moh's scale hardness value" of the most abundant mineral constituting the aggregate.

AHP Generalisation

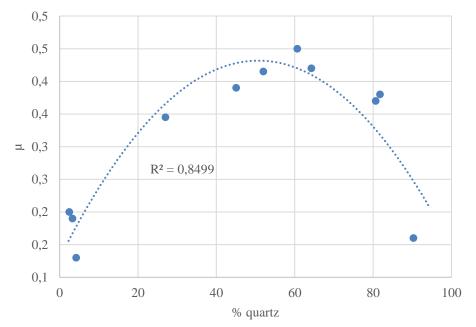

$$AHP_{M} = \frac{1}{\sum_{i}^{N} \alpha_{i}} \sum_{i}^{N} \alpha_{i} \times AHP_{i}$$

Where N represents the number of aggregates in the mixture.


Analysis and Discussion

		Dolomite	Limestone (1)	Limestone (2)	Silico-Limestone	Greywacke (1)	Greywacke (2)	Granite	Basalt	Quartzite (1)	Quartzite (2)	Quartzite (3)	Rhyolite / Dacite	Blast Furnace (HF)	Slag Electrical oven (EAF)	(Mixe 1 = 52% Limestone (2) + 40% Basait	(Mixe 2 = 8% Limestone (2) + 29% Basalt + 54 Quarzitz (3)	Mixe 3 = 70% Limestone (2) + 21% Quarzitz (3)
% Qı	uartz	4	3		81	64	52	27		82	61	90	45	2				
	AH	3,9	3,1	3	6,4	6,0	5,5	6,1	6,2	6,3	5,7	6,7	6,1	4,9	5,8			
All	СН	15,0	6,0	0,0	22,8	21,3	9,5	4,0	7,5	22,0	21,0	13,5	15,8	11,8	6,5			
minerals	AHP	18,9	9,1	3,0	29,2	27,3	15,0	10,1	13,7	28,3	26,7	20,2	21,9	16,6	12,3	4,7	6,6	3,9
	AH	3,8	3,0	3	6,7	6,5	5,5	6,1	6,2	6,6	6,2	7,0	6,2	4,8	5,8			
Only	СН	0,0	0,0	0,0	4,0	5,3	9,5	4,0	2,0	4,5	10,8	0,0	6,8	7,3	3,0			
minrerals > 5 %	АНР	3,8	3,0	3,0	10,7	11,7	15,0	10,1	8,2	11,1	17,0	7,0	13,0	12,0	8,8	4,7	6,6	3,9
μ _{ws} (after	polishing)	0,1	0,2	0,1	0,4	0,4	0,4	0,3	0,3	0,4	0,5	0,2	0,4	0,2	0,2	0,2	0,3	0,2

Only mineral > 5%


Only mineral > 5% >5% of only Natural aggregates

Analysis and Discussion

		Dolomite	Limestone (1)	Limestone (2)	Silico-Limestone	Greywacke (1)	Greywacke (2)	Granite	Basalt	Quartzite (1)	Quartzite (2)	Quartzite (3)	Rhyolite / Dacite	Blast Furnace (HF)	Slag Electrical oven (EAF)	(Mixe 1 = 52% Limestone (2) + 40% Basalt	(Mixe 2 = 8% Limestone (2) + 29% Basalt + 54 Quarzitz (3)	Mixe 3 = 70% Limestone (2) + 21% Quarzitz (3)
% Q	uartz	4	3		81	64	52	27		82	61	90	45	2				
	AH	3,9	3,1	3	6,4	6,0	5,5	6,1	6,2	6,3	5,7	6,7	6,1	4,9	5,8			
All	СН	15,0	6,0	0,0	22,8	21,3	9,5	4,0	7,5	22,0	21,0	13,5	15,8	11,8	6,5			
minerals	AHP	18,9	9,1	3,0	29,2	27,3	15,0	10,1	13,7	28,3	26,7	20,2	21,9	16,6	12,3	4,7	6,6	3,9
	AH	3,8	3,0	3	6,7	6,5	5,5	6,1	6,2	6,6	6,2	7,0	6,2	4,8	5,8			
Only	CH	0,0	0,0	0,0	4,0	5,3	9,5	4,0	2,0	4,5	10,8	0,0	6,8	7,3	3,0			
minrerals > 5 %	AHP	3,8	3,0	3,0	10,7	11,7	15,0	10,1	8,2	11,1	17,0	7,0	13,0	12,0	8,8	4,7	6,6	3,9
μ _{ws} (after	polishing)	0,1	0,2	0,1	0,4	0,4	0,4	0,3	0,3	0,4	0,5	0,2	0,4	0,2	0,2	0,2	0,3	0,2

µWS versus % Quartz

Conclusion

- An aggregate hardness parameter was defined based on the mineralogical composition of the aggregates and the hardness of the individual mineral grains.
- This parameter was then correlated to the WS-friction coefficient values.
- It was found that the aggregate hardness parameter gives a good indication of the ability of an aggregate to retain its microtexture and consequently its friction properties.

Conclusion

- Aggregates composed of single minerals of relatively low hardness, such as limestones, have a very low resistance to polishing.
- On the other hand, sandstones, composed primarily of hard quartz mineral particles cemented together with a softer mineral matrix, have good frictional properties because of the differential wear and debonding of individual particles under traffic.

Conclusion

Of significance to practitioners are the following observations:

- When choosing the aggregate, the mere knowledge of the mineralogical composition of aggregates is enough to estimate the final skid resistance that will be offered the road.
- This information may be sufficient to predict the lifetime of the wearing course, duration beyond which the layer must be renewed.

Thanks! Questions?